Shortest Paths and MSTs

Exam Prep 09
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Dijkstra’s Algorithm

We've learned that BFS can help us find paths from the start to other nodes with a minimum number of
edges. However, neither BFS or DFS account for finding shortest paths based off edge weight.

Dijkstra’s algorithm is a method of finding the shortest path from one
node to every other node in the graph. You use a priority queue that
sorts vertices based off of their distance to the root node.

Steps:

1.
2.

> w

Pop node from the front of the queue - this is the current node.
Add/update distances of all of the neighbors of the current node
inthe PQ.

Re-sort the priority queue (technically the PQ does this itself).
Finalize the distance to the current node from the root.

Repeat while the PQ is not empty.

7 B

2

\ £
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A*

A" is a method of finding the shortest path from one node to a specific other node in the graph. It operates
similarly to Dijkstra’s except for that we use a (given) heuristic to estimate a vertex’s distance from the goal.

M

A D
(3)
1\ \
C 1
(4) ~ F

We're guaranteed to get the shortest path if our heuristic is admissible (never overestimates the true

distance to the goal) and consistent (estimate always <= the estimated distance from any neighboring
vertex to the goal + the cost of reaching that neighbor). -
CS61B Spring 2024 \{




A*

A" is a method of finding the shortest path from one node to a specific other node in the graph. It operates
similarly to Dijkstra’s except for that we use a (given) heuristic to estimate a vertex’s distance from the goal.

Steps:
1. Pop node from the top of the queue - this is the current node. ,
: i [ fth t node. Thi B
2. Add/update distances of all of the children of the current node. This o 7 ~_ .

(1

distance will be the sum of the distance up to that child node and _— ‘\
. o 4. A 1

our guess of how far away the goal node is (our heuristic). D
3. Re-sort the priority queue. \ (3)
4. Check if we've hit the goal node (if so we stop). 1 c ‘ 1
5. Repeat while the PQ is not empty. (4) ~ -

2
(3)

Note: the heuristic may not always be very good and might lead us down a path that isn't the shortest!
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Minimum Spanning Trees

Minimum Spanning Trees are set of edges that connect all the nodesin a
graph while being of the smallest possible weight.

MSTs may not be unique if there are multiple edges of the same weight. B 2

7 T~

. . o . . / E
There are two main algorithms for finding MSTs in this class: A 1\ P
Prim’s and Kruskal’s. Both are based on the cut property: if we “cut” 3\ D 1
across any edges and separate the graph into two groups, the minimum 1\ >
weight edge that falls along that cut will be in some MST. C | 1
\ F
2
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1A Dijkstra’s, A

DistTo

1
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1A Dijkstra’s, A

DistTo o © o | o | | o | o
1 1 co | oo 3 o | 0o | o
2 vV | 00| o 3 | 00| o o
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1A Dijkstra’s, A

DistTo 0 | 00| o o o o | o
1 1 co | oo 3 o | 0o | o
2 v 3 | o 3| 0 o o
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1A Dijkstra’s, A* A B C D E F G H

2 2 v 3 | oo | 3 5 | oo o
1’— C D .
\ N

2 1
N\ \
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1A Dijkstra’s, A* A B C D E F G H

DistTo (0] (00] (o) oo [00) [0'0) 0 Fo o)

2

1 B = b,

/ AN

AN e

3 5

E — F — G

7 4

2 v | 3 | o] 3 5 | oo | ©
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1A Dijkstra’s, A* il I e I I I
DistTo | O | oo | oo | oo | c0o | 0o | © | ©
1 Vv | 1 | oo  ow| 3  o| 0| ©
2 2 vV | 3 0| 3 5| 0|
— D4 3 Vv | ©o| 3| 4| o ©
/ AN
4 H
\ /
3 5
E G
7 4

We found a better path to F, so we update distTo[F]
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1A Dijkstra’s, A* ALBLCIPIEIP O
DistTo | O | ©0 | ©0 | ©0 | ©o | © o | ©

1 v | |1 o |3 o o o

2 v 3| o | 3 5|0 o

4 3 V o 3 4| o o

\ H 4 o Vv | 4| 0 ©

2
., B — ¢ D
A \12 1
@
3 S
F — G
7 4




1A Dijkstra’s, A* I I e I IR I
DistTo O | o o | o | o/ | o oo
1 v 1 | oo | 3 0| o | o
2 2 v | 3 o | 3 5 | o | o
1 Ny O P 4 3 Vv oo| 3| 4| 0| ©
/ AN
A . : 5 1 : 4 o | Vv | 4| o |
/5
3 - F — G

7 4

This new path to F is NOT better than our current one




1A Dijkstra’s, A* ALBICIP RSN
DistTo O | o o | o | o/ | o oo
1 v 1 | oo | 3 0| o | o
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1 y 0 4 3 v 34
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1A Dijkstra’s, A ALBLCRIEIR SR
DistTo O | o o | o | o/ | o oo
1 v 1 | oo | 3 0| o | o
2 2 v | 3 o | 3 5 | o | o
1 y 0 4 3 i 34
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1A Dijkstra’s, A A I T N N R
DistTo O | o o | o | o/ | o oo
1 v 1 | oo | 3 0| o | o
2 2 v | 3 o | 3 5 | o | o
1 y 0 4 3 Vv 3 4
oo ©o
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\ / 5 6 V|8 |
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1A Dijkstra’s, A AIBICIPDIE]F]G|H
DistTo O o | o | | | | o oo
1 v 1 | oo | 3 0| o | o
2 2 v | 3 o | 3 5 | o | o

1 B =— C
/ 3 V || 3 4| 0| o
A . 1 4 o | Vv | 4| o |
\ 5 6 V|8 |

3

E —7 F 6 v 8 | o




1A Dijkstra’s, A ol I e e A I I
DistTo O | o o | o | o/ | o oo
1 v 1 | oo | 3 0| o | o
2 2 v | 3 o | 3 5 | o | o

1 B =—
/ 3 V || 3 4| 0| o
A . 1 4 o | Vv | 4| o |
\ 5 6 V|8 |

3

E —7 F 6 v 7 o




s ) k A B C D E F G H
1A Dijkstra’s, A
DistTo O | oo | co| | | 0| © oo
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1 B ==
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A . 1 4 o | Vv | 4| o |
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3
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1A Dijkstra’s, A AlBICIDIEIFR|G
DistTo O | o o | o | o/ | o oo
1 v 1 | oo | 3 0| o | o
2 p v | 3 o | 3 5 | oo |
1
/ 3 Vv || 3| 4 o] o
A 4 oo VvV | 4 | o | ©
4
\ 5 6 V|8 | o
o —7 6 v 7 |10
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1B Dijkstra’s, A*

h(u,G) 9 7 4 1 10 3 o 5

Start | 09 | o o) oo o) o) oo oo

2
, B — D,
7 N

A 4 1 2 1 H
N /|
3 5
E — F — G
7 4
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1B Dijkstra’s, A*

h(u,G) 9 7 4 1 10 3 o 5

Start | 09 | o 00 oo o) o) oo oo

2
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1B Dijkstra’s, A*

h(u,G) 9 7 4 1 10 3 o 5

Start | 09 | o 00 oo o) o) oo oo

2

D 1 v 1,8 | oo oo oo oo oo oo

, B —
g N
( 4 1 2 1 H
/|
y - = . .

G
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1B Dijkstra’s, A*

h(u,G) 9 7 4 1 10 3 o 5

Start | 09 | o 00 oo o) o) oo oo

2

1 B C D 4 1 v 1,8 oo o | 313 | o oo oo
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1B Dijkstra’s, A*

u A B E
huG | 9 7 10

A B E

Start | 09 | o
1 v |18 313
2 v 313




1B Dijkstra’s, A*

u A B C E
huG | 9 7 4 10

A B C E

Start | 09 | © | o o
1 v 118 | 313
2 v | 37 313




1B Dijkstra’s, A*

u A B C E F
huG | 9 7 4 10 | 3
A B C E F

Start | 09 | © | o o | o
1 v 118 | 313 | o

2 v 37 313 | 58




1B Dijkstra’s, A*

h(u,G) 9 7 4 1 10 3 o 5

Start | 09 | o 00 oo o) o) oo oo

1 v 1,8 0 co [313| o oo o)

2
1 B D 4
/ N > Vv 37| o 31358 o o
A 4 1 2 1 H
\ / 3 v oo 313 | 58 | o oo
5
M - B -
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1B Dijkstra’s, A*

e

u A B C E F G H
huG | 9 7 4 10 | 3 o) 5
A B C E F G H

Start | 09 | © | o © | o | o | o
1 v 18 | o 33 c© | © | o

2 v 37 33| 58 o |

3 v 313 | 47 | o© oo
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1B Dijkstra’s, A*

2
B =— C D

Even though E has a closer distance,
it has lower priority than F because it
has a high heuristic!

u A B C E F
huG | 9 7 4 10 | 3
A B C E F
Start | 09 | © | o © | o
1 v |18 | 313 | o
2 v 37 313 | 58
3 v 313 | 4,7
4 313 V




1B Dijkstra’s, A*

2
B = C

u A B C D E F
huG | 9 7 4 1 10 3
A B C D E F
Start | 09 | o | ©® | © | ©© | o
1 v 118 | oo | © 313
2 v 137 o 313]| 58
3 v co | 313 | 4,7
4 6,7 | 313 | V




1B Dijkstra’s, A*

2
B =— C D

The path to E from F is not better
than our current path

u A B C D E F
huG | 9 7 4 1 10 3
A B C D E F
Start | 09 | o | ©® | © | ©© | o
1 v 118 | © | o 313 |
2 v | 37| 0o 313 |58
3 v co | 313 | 4,7
4 6,7 | 313 | V




1B Dijkstra’s, A*

2
B = C

u A B C D E F G
huG | 9 7 4 1 10 | 3 o]
A B C D E F G
Start |09 | @ | © | © | ©© | © | ®
1 v 118 oo | o 313 © | o
2 Vi 3,7 co | 313 | 58 o
3 v o 313 | 47 | o
4 67 313 Vv | 88




1B Dijkstra’s, A*

2
, B — C
/
A A\
N
S e —@
7

u A B C D E F G
huG | 9 7 4 1 10 | 3 o]
A B C D E F G
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1 v 118 oo | o 313 © | o
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4 67 313 Vv | 88
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1B Dijkstra’s, A*

2
, B — C
/
A A\
N
S e —@
7

u A B C D E F G
huG | 9 7 4 1 10 | 3 o]
A B C D E F G
Start |09 | @ | © | © | ©© | © | ®
1 v 118 oo | o 313 © | o
2 Vi 3,7 co | 313 | 58 o
3 v o 313 | 47 | o
4 67 313 Vv | 88
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1B Dijkstra’s, A*

2
, B — C
/
A A\
N
S e —@
7

u A B C D E F G H
huG | 9 7 4 1 10 | 3 o) 5
A B C D E F G H
Start | 09| © | ©  © | © | © | ® | ®
1 v 1,8 | o © | 313 | o o o
2 v |37 o 313 58 o | ™
3 Vv | o0 31347 | © | ©
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1B Dijkstra’s, A*

u A B C D E F G H
huG | 9 7 4 1 10 | 3 O 5
A B C D E F G H
Start | 09| © | ©  © | © | © | ® | ®
1 v 118 | 0o | ©o [313| o©© | © | o
2 v |37 o 313 58 o | ™
3 Vv | o0 31347 | © | ©
4 67 313 V |88 |
5 v | 313 7,7 | 1015
6 v




2A Conceptual Shortest Paths

For a weighted, undirected graph:

(T/F) If all edge weights are equal and positive, the breadth-first search starting from node A will return the
shortest path from a node A to a target node B.
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2A Conceptual Shortest Paths

For a weighted, undirected graph:

(T/F) If all edge weights are equal and positive, the breadth-first search starting from node A will return the
shortest path from a node A to a target node B.

True. If all edges are equal in weight, then the shortest path from A to each node is proportional to the
number of edges on the path, so breadth first search will return the shortest path.
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2B Conceptual Shortest Paths

For a weighted, undirected graph:

(T/F) If all edges have distinct weights, the shortest path between any two vertices is unique.

CS61B Spring 2024 \d



2B Conceptual Shortest Paths

For a weighted, undirected graph:
(T/F) If all edges have distinct weights, the shortest path between any two vertices is unique.

False. Consider a case of 3 nodes where AB is 3, ACis 5,and BCis 2. Here, the two possible paths from Ato C
both are of length 5.
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2C Conceptual Shortest Paths

For a weighted, undirected graph:

(T/F) Adding a constant positive integer k to all edge weights will not change the original shortest path
between any two vertices.
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2C Conceptual Shortest Paths

For a weighted, undirected graph:

(T/F) Adding a constant positive integer k to all edge weights will not change the original shortest path
between any two vertices.

False. Consider a case of 3 nodes A, B, and Cwhere ABis 1, ACis 2.5 and BC is 1. Clearly, the best path from
Ato Cis through B, with weight 2. However, if we add 1 to each edge weight, suddenly the path going
through B will have weight 4, while the direct path is only 3.5. In general, paths with greater number of edges
end up getting penalized more than paths with fewer edges.
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2C Conceptual Shortest Paths

For a weighted, undirected graph:

(T/F) Adding a constant positive integer k to all edge weights will not change the original shortest path
between any two vertices.
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2D Conceptual Shortest Paths

For a weighted, undirected graph:

(T/F) Multiplying all edge weights by a constant positive integer k will not change the original shortest path
between any two vertices.
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2D Conceptual Shortest Paths

For a weighted, undirected graph:

(T/F) Multiplying all edge weights by a constant positive integer k will not change the original shortest path
between any two vertices.

True. Suppose we have arbitrary nodes u and v. Let’s say the shortest path from u to v, before the
multiplication by k, was of total weight w. This implies that every other path from u to v was of total weight
greater than w. After multiplying each edge weight by k, the total weight of the shortest path becomes w * k
and the total weight of every other path becomes some number greater than w * k. Therefore, the original
shortest path doesn’t change.
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2D Conceptual Shortest Paths

For a weighted, undirected graph:

(T/F) Multiplying all edge weights by a constant positive integer k will not change the original shortest path
between any two vertices.

p* (shortest path) = w

‘ p (any other path) =w + A
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2D Conceptual Shortest Paths

For a weighted, undirected graph:

(T/F) Multiplying all edge weights by a constant positive integer k will not change the original shortest path
between any two vertices.

p* (shortest path) = k * w

‘ p (any other path) = k(w + A)
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3A Shortest Paths Algorithm Design

Given a weighted directed graph with V vertices and E edges, two disjoint sets of vertices M and F, determine
the shortest path between any vertex in M and any vertexin F.

Case 1:|M| =1, |F| > 1.
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3A Shortest Paths Algorithm Design

Given a weighted directed graph with V vertices and E edges, two disjoint sets of vertices M and F, determine
the shortest path between any vertex in M and any vertexin F.

Case 1:|M| =1, |F| > 1.

Run Dijkstra's, starting from the only city m in M. This will generate the shortest distance to all cities in the
graph. Then, iterate over every city f in F, and take the minimum distance fromm tof.
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3B Shortest Paths Algorithm Design

Given a weighted directed graph with V vertices and E edges, two disjoint sets of vertices M and F, determine
the shortest path between any vertex in M and any vertexin F.

Case2:|M|>1, |F| =1
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3B Shortest Paths Algorithm Design

Given a weighted directed graph with V vertices and E edges, two disjoint sets of vertices M and F, determine
the shortest path between any vertex in M and any vertexin F.

Case2:|M|>1, |F| =1

Create adummy vertex and add an edge with weight O from dummy to all vertices in M. Run Dijkstra’s
starting from the dummy. Take the distance from dummy to the node in F.

B 2
: )
N F
OI\/I 1\’

—’7A D
_o 1\ ‘1
R

\_ )2\F
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3C Shortest Paths Algorithm Design

Given a weighted directed graph with V vertices and E edges, two disjoint sets of vertices M and F, determine
the shortest path between any vertex in M and any vertexin F.

Case 3:|M| > 1, |F| > 1.
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3C Shortest Paths Algorithm Design

Given a weighted directed graph with V vertices and E edges, two disjoint sets of vertices M and F, determine
the shortest path between any vertex in M and any vertexin F.

Case 3:|M| > 1, |F| > 1.

Same algorithm in 3C, but take the minimum distance from dummy to all nodesin F.

-
B 2 F
—1 1\~E
M [ 7 N\
) 7A 1
- D

Lol o |
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4A Introduction to MSTs - Kruskal’s

Connected Nodes:

12

A C

X
\ / D
5

G 4 B

4

E
7
2

F
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4A Introduction to MSTs - Kruskal’s

Connected Nodes:
F
E

12

A C

\
\ / D
5

G 4 B

4

E
7
2

F

CS61B Spring 2024 \d



4A Introduction to MSTs - Kruskal’s

Connected Nodes:
F

E
B
C

12

A C

x
\ / D
5

G 4 B

4

E
7
2

F
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4A Introduction to MSTs - Kruskal’s

Connected Nodes:

O W mm

12

A C

\
\ / D
5

G 4 B

4

E
7
2
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4A Introduction to MSTs - Kruskal’s

Connected Nodes:

F
12 E
A C B
\ C
G

\ / D

5
G - B
4
E
7
2
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4A Introduction to MSTs - Kruskal’s

Connected Nodes:

F
12 E
A C B
\ C
G
D
\ / A
5
G = B
4
E
/ 2 We don't take edge
- CE; it creates a cycle!
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4A Introduction to MSTs - Kruskal’s

Connected Nodes:

F
12 E
A C B
\ C
G
D
\ / A
5 D
G = B
4
E
/ 2 We don't take edge
c BF; it creates a cycle!
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4A Introduction to MSTs - Kruskal’s

12

A C

\
\ / D
5

G 4 B

4

E
/
2

Final Result
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4A Introduction to MSTs - Prim’s

Connected Nodes:
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4A Introduction to MSTs - Prim’s

Connected Nodes:

A
12 B
A = = = === - - C
, X
7/
6 3, D
/7
/7 5
e - - - - @ ~ o
- 4
\ §~~
= E
7\ /
S 2
F
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4A Introduction to MSTs - Prim’s

Connected Nodes:

A
12 B
A C ~ C
~ _ 9
\ ™~
6 3 \ ~ D
\
\5
4 \
G = B =~ o
4
\ ~§~~ \
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4A Introduction to MSTs - Prim’s

Connected Nodes:

A
12 B
A = = C ~ C
\ \9\ E
6 3 \ ~ D
\
\5
¢ —F--— 8 4 \\
\\
N\
7\ ,/ E
\. ” 2
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4A Introduction to MSTs - Prim’s

Connected Nodes:

MmO @ >
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4A Introduction to MSTs - Prim’s

Connected Nodes:

OmmAOw@>
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4A Introduction to MSTs - Prim’s

12

A C

\
\ / D
5

G 4 B

4

E
/
2

Final Result
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4B Introduction to MSTs

True/False: Adding 1 to the smallest edge of a graph G with unique edge weights must change the total
weight of its MST
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4B Introduction to MSTs

True/False: Adding 1 to the smallest edge of a graph G with unique edge weights must change the total
weight of its MST

True, either this smallest edge (now with weight +1) is included, or this smallest edge is not included and
some larger edge takes its place since there was no other edge of equal weight. Either way, the total weight
increases.
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4C Introduction to MSTs

True/False: If all the weights in a graph is unique, there is only one possible MST.

CS61B Spring 2024 \d



4C Introduction to MSTs

True/False: If all the weights in an MST are unique, there is only one possible MST.

True. The cut property states that the minimum weight edge in a cut must be in the MST. Since all weights are
unique, the minimum weight edge is always unique, so there is only one possible MST.
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4D Introduction to MSTs

True/False: The shortest path from vertex u to vertex vin a graph G is the same as the shortest path from u to
vusing only edges in T, where T is the MST of G.
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4D Introduction to MSTs

True/False: The shortest path from vertex u to vertex vin a graph G is the same as the shortest path from u to
vusing only edges in T, where T is the MST of G.

False, consider vertices C and E in the graph from 4A
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