Shortest Paths and MSTs

Exam Prep 09

Announcements

Sunday Monday Tuesday Wednesday Thursday Friday Saturday
3/18 3/21
Homework 3 Due Midterm 2

CS61B Spring 2024 \d

Content Review

)
CS61B Spring 2024 N

Dijkstra’s Algorithm

We've learned that BFS can help us find paths from the start to other nodes with a minimum number of
edges. However, neither BFS or DFS account for finding shortest paths based off edge weight.

Dijkstra’s algorithm is a method of finding the shortest path from one
node to every other node in the graph. You use a priority queue that
sorts vertices based off of their distance to the root node.

Steps:

1.
2.

> w

Pop node from the front of the queue - this is the current node.
Add/update distances of all of the neighbors of the current node
inthe PQ.

Re-sort the priority queue (technically the PQ does this itself).
Finalize the distance to the current node from the root.

Repeat while the PQ is not empty.

7 B

2

\ £

CS61B Spring 2024 \d

A*

A" is a method of finding the shortest path from one node to a specific other node in the graph. It operates
similarly to Dijkstra’s except for that we use a (given) heuristic to estimate a vertex’s distance from the goal.

M

A D
(3)
1\ \
C 1
(4) ~ F

We're guaranteed to get the shortest path if our heuristic is admissible (never overestimates the true

distance to the goal) and consistent (estimate always <= the estimated distance from any neighboring
vertex to the goal + the cost of reaching that neighbor). -
CS61B Spring 2024 \{

A*

A" is a method of finding the shortest path from one node to a specific other node in the graph. It operates
similarly to Dijkstra’s except for that we use a (given) heuristic to estimate a vertex’s distance from the goal.

Steps:
1. Pop node from the top of the queue - this is the current node. ,
: i [fth t node. Thi B
2. Add/update distances of all of the children of the current node. This o 7 ~_ .

(1

distance will be the sum of the distance up to that child node and _— ‘\
. o 4. A 1

our guess of how far away the goal node is (our heuristic). D
3. Re-sort the priority queue. \ (3)
4. Check if we've hit the goal node (if so we stop). 1 c ‘ 1
5. Repeat while the PQ is not empty. (4) ~ -

2
(3)

Note: the heuristic may not always be very good and might lead us down a path that isn't the shortest!

CS61B Spring 2024 \d

Minimum Spanning Trees

Minimum Spanning Trees are set of edges that connect all the nodesin a
graph while being of the smallest possible weight.

MSTs may not be unique if there are multiple edges of the same weight. B 2

7 T~

. . o . . / E
There are two main algorithms for finding MSTs in this class: A 1\ P
Prim’s and Kruskal’s. Both are based on the cut property: if we “cut” 3\ D 1
across any edges and separate the graph into two groups, the minimum 1\ >
weight edge that falls along that cut will be in some MST. C | 1
\ F
2

CS61B Spring 2024 \d

Worksheet

)
CS61B Spring 2024 N

1A Dijkstra’s, A* AB C D E F G H

DistTo | O | oo | oo | oo .o o © |

CS61B Spring 2024 \{

1A Dijkstra’s, A* AB C D E F G H

DistTo | O | oo | oo | oo .o o © |

CS61B Spring 2024 \{

1A Dijkstra’s, A* AB C D E F G H

DistTo | O | oo | oo | oo .o o © |

CS61B Spring 2024 \{

1A Dijkstra’s, A

DistTo

1

(00
CS61B Spring 2024 N

1A Dijkstra’s, A

DistTo o © o | o | | o | o
1 1 co | oo 3 o | 0o | o
2 vV | 00| o 3 | 00| o o

(00
CS61B Spring 2024 N

1A Dijkstra’s, A

DistTo 0 | 00| o o o o | o
1 1 co | oo 3 o | 0o | o
2 v 3 | o 3| 0 o o

(00
CS61B Spring 2024 N

1A Dijkstra’s, A* A B C D E F G H

2 2 v 3 | oo | 3 5 | oo o
1’— C D .
\ N

2 1
N\ \

(00
CS61B Spring 2024 N

1A Dijkstra’s, A* A B C D E F G H

DistTo (0] (00] (o) oo [00) [0'0) 0 Fo o)

2

1 B = b,

/ AN

AN e

3 5

E — F — G

7 4

2 v | 3 | o] 3 5 | oo | ©

(00
CS61B Spring 2024 N

1A Dijkstra’s, A* il I e I I I
DistTo | O | oo | oo | oo | c0o | 0o | © | ©
1 Vv | 1 | oo ow| 3 o| 0| ©
2 2 vV | 3 0| 3 5| 0|
— D4 3 Vv | ©o| 3| 4| o ©
/ AN
4 H
\ /
3 5
E G
7 4

We found a better path to F, so we update distTo[F]

CS61B Spring 2024 \d

1A Dijkstra’s, A* ALBLCIPIEIP O
DistTo | O | ©0 | ©0 | ©0 | ©o | © o | ©

1 v | |1 o |3 o o o

2 v 3| o | 3 5|0 o

4 3 V o 3 4| o o

\ H 4 o Vv | 4| 0 ©

2
., B — ¢ D
A \12 1
@
3 S
F — G
7 4

1A Dijkstra’s, A* I I e I IR I
DistTo O | o o | o | o/ | o oo
1 v 1 | oo | 3 0| o | o
2 2 v | 3 o | 3 5 | o | o
1 Ny O P 4 3 Vv oo| 3| 4| 0| ©
/ AN
A . : 5 1 : 4 o | Vv | 4| o |
/5
3 - F — G

7 4

This new path to F is NOT better than our current one

1A Dijkstra’s, A* ALBICIP RSN
DistTo O | o o | o | o/ | o oo
1 v 1 | oo | 3 0| o | o
2 2 v | 3 o | 3 5 | o | o
1 y 0 4 3 v 34

[os) © | o

/ AN
A 1 y 4 o | V 4 | oo | o
\ / 5 foe) v | o | o

3 5

1A Dijkstra’s, A ALBLCRIEIR SR
DistTo O | o o | o | o/ | o oo
1 v 1 | oo | 3 0| o | o
2 2 v | 3 o | 3 5 | o | o
1 y 0 4 3 i 34
oo ©o
/ AN
A 1 y 4 o | V 4 | oo | o
\ / 5 6 v | oo | o
3 5

1A Dijkstra’s, A A I T N N R
DistTo O | o o | o | o/ | o oo
1 v 1 | oo | 3 0| o | o
2 2 v | 3 o | 3 5 | o | o
1 y 0 4 3 Vv 3 4
oo ©o
/ AN
A 1 y 4 o | V 4 | oo | o
\ / 5 6 V|8 |
3 5

1A Dijkstra’s, A AIBICIPDIE]F]G|H
DistTo O o | o | | | | o oo
1 v 1 | oo | 3 0| o | o
2 2 v | 3 o | 3 5 | o | o

1 B =— C
/ 3 V || 3 4| 0| o
A . 1 4 o | Vv | 4| o |
\ 5 6 V|8 |

3

E —7 F 6 v 8 | o

1A Dijkstra’s, A ol I e e A I I
DistTo O | o o | o | o/ | o oo
1 v 1 | oo | 3 0| o | o
2 2 v | 3 o | 3 5 | o | o

1 B =—
/ 3 V || 3 4| 0| o
A . 1 4 o | Vv | 4| o |
\ 5 6 V|8 |

3

E —7 F 6 v 7 o

s) k A B C D E F G H
1A Dijkstra’s, A
DistTo O | oo | co| | | 0| © oo
1 v 1 | oo | 3 0| o | o
2 2 v 3 o | 3 5 | oo o
1 B ==
/ 3 v | oo | 3 4 o | o
A . 1 4 o | Vv | 4| o |
\ 5 6 Vv 8 o
3
S 6 v 7 | 10
7

1A Dijkstra’s, A AlBICIDIEIFR|G
DistTo O | o o | o | o/ | o oo
1 v 1 | oo | 3 0| o | o
2 p v | 3 o | 3 5 | oo |
1
/ 3 Vv || 3| 4 o] o
A 4 oo VvV | 4 | o | ©
4
\ 5 6 V|8 | o
o —7 6 v 7 |10
7 v

1B Dijkstra’s, A*

h(u,G) 9 7 4 1 10 3 o 5

Start | 09 | o o) oo o) o) oo oo

2
, B — D,
7 N

A 4 1 2 1 H
N /|
3 5
E — F — G
7 4

CS61B Spring 2024 \d

1B Dijkstra’s, A*

h(u,G) 9 7 4 1 10 3 o 5

Start | 09 | o 00 oo o) o) oo oo

2

D 1 v oo 0o 0 0 0o o) o)

, B — .
N
AN 12/ H
/
y - B - .

G

7 4

1B Dijkstra’s, A*

h(u,G) 9 7 4 1 10 3 o 5

Start | 09 | o 00 oo o) o) oo oo

2

D 1 v 1,8 | oo oo oo oo oo oo

, B —
g N
(4 1 2 1 H
/|
y - = . .

G

7 4

1B Dijkstra’s, A*

h(u,G) 9 7 4 1 10 3 o 5

Start | 09 | o 00 oo o) o) oo oo

2

1 B C D 4 1 v 1,8 oo o | 313 | o oo oo
‘ \1 2 1 H
\ /
3 - U

G

7 4

1B Dijkstra’s, A*

u A B E
huG | 9 7 10

A B E

Start | 09 | o
1 v |18 313
2 v 313

1B Dijkstra’s, A*

u A B C E
huG | 9 7 4 10

A B C E

Start | 09 | © | o o
1 v 118 | 313
2 v | 37 313

1B Dijkstra’s, A*

u A B C E F
huG | 9 7 4 10 | 3
A B C E F

Start | 09 | © | o o | o
1 v 118 | 313 | o

2 v 37 313 | 58

1B Dijkstra’s, A*

h(u,G) 9 7 4 1 10 3 o 5

Start | 09 | o 00 oo o) o) oo oo

1 v 1,8 0 co [313| o oo o)

2
1 B D 4
/ N > Vv 37| o 31358 o o
A 4 1 2 1 H
\ / 3 v oo 313 | 58 | o oo
5
M - B -

7 4

1B Dijkstra’s, A*

e

u A B C E F G H
huG | 9 7 4 10 | 3 o) 5
A B C E F G H

Start | 09 | © | o © | o | o | o
1 v 18 | o 33 c© | © | o

2 v 37 33| 58 o |

3 v 313 | 47 | o© oo

CS61B Spring 2024 &é

1B Dijkstra’s, A*

2
B =— C D

Even though E has a closer distance,
it has lower priority than F because it
has a high heuristic!

u A B C E F
huG | 9 7 4 10 | 3
A B C E F
Start | 09 | © | o © | o
1 v |18 | 313 | o
2 v 37 313 | 58
3 v 313 | 4,7
4 313 V

1B Dijkstra’s, A*

2
B = C

u A B C D E F
huG | 9 7 4 1 10 3
A B C D E F
Start | 09 | o | ©® | © | ©© | o
1 v 118 | oo | © 313
2 v 137 o 313]| 58
3 v co | 313 | 4,7
4 6,7 | 313 | V

1B Dijkstra’s, A*

2
B =— C D

The path to E from F is not better
than our current path

u A B C D E F
huG | 9 7 4 1 10 3
A B C D E F
Start | 09 | o | ©® | © | ©© | o
1 v 118 | © | o 313 |
2 v | 37| 0o 313 |58
3 v co | 313 | 4,7
4 6,7 | 313 | V

1B Dijkstra’s, A*

2
B = C

u A B C D E F G
huG | 9 7 4 1 10 | 3 o]
A B C D E F G
Start |09 | @ | © | © | ©© | © | ®
1 v 118 oo | o 313 © | o
2 Vi 3,7 co | 313 | 58 o
3 v o 313 | 47 | o
4 67 313 Vv | 88

1B Dijkstra’s, A*

2
, B — C
/
A A\
N
S e —@
7

u A B C D E F G
huG | 9 7 4 1 10 | 3 o]
A B C D E F G
Start |09 | @ | © | © | ©© | © | ®
1 v 118 oo | o 313 © | o
2 Vi 3,7 co | 313 | 58 o
3 v o 313 | 47 | o
4 67 313 Vv | 88
5 v | 313 8,8

1B Dijkstra’s, A*

2
, B — C
/
A A\
N
S e —@
7

u A B C D E F G
huG | 9 7 4 1 10 | 3 o]
A B C D E F G
Start |09 | @ | © | © | ©© | © | ®
1 v 118 oo | o 313 © | o
2 Vi 3,7 co | 313 | 58 o
3 v o 313 | 47 | o
4 67 313 Vv | 88
5 v | 313 1,7

1B Dijkstra’s, A*

2
, B — C
/
A A\
N
S e —@
7

u A B C D E F G H
huG | 9 7 4 1 10 | 3 o) 5
A B C D E F G H
Start | 09| © | © © | © | © | ® | ®
1 v 1,8 | o © | 313 | o o o
2 v |37 o 313 58 o | ™
3 Vv | o0 31347 | © | ©
4 67 313| Vv 88| o
5 v | 313 7,7 | 1015

1B Dijkstra’s, A*

u A B C D E F G H
huG | 9 7 4 1 10 | 3 O 5
A B C D E F G H
Start | 09| © | © © | © | © | ® | ®
1 v 118 | 0o | ©o [313| o©© | © | o
2 v |37 o 313 58 o | ™
3 Vv | o0 31347 | © | ©
4 67 313 V |88 |
5 v | 313 7,7 | 1015
6 v

2A Conceptual Shortest Paths

For a weighted, undirected graph:

(T/F) If all edge weights are equal and positive, the breadth-first search starting from node A will return the
shortest path from a node A to a target node B.

CS61B Spring 2024 \d

2A Conceptual Shortest Paths

For a weighted, undirected graph:

(T/F) If all edge weights are equal and positive, the breadth-first search starting from node A will return the
shortest path from a node A to a target node B.

True. If all edges are equal in weight, then the shortest path from A to each node is proportional to the
number of edges on the path, so breadth first search will return the shortest path.

CS61B Spring 2024 \d

2B Conceptual Shortest Paths

For a weighted, undirected graph:

(T/F) If all edges have distinct weights, the shortest path between any two vertices is unique.

CS61B Spring 2024 \d

2B Conceptual Shortest Paths

For a weighted, undirected graph:
(T/F) If all edges have distinct weights, the shortest path between any two vertices is unique.

False. Consider a case of 3 nodes where AB is 3, ACis 5,and BCis 2. Here, the two possible paths from Ato C
both are of length 5.

CS61B Spring 2024 \d

2C Conceptual Shortest Paths

For a weighted, undirected graph:

(T/F) Adding a constant positive integer k to all edge weights will not change the original shortest path
between any two vertices.

CS61B Spring 2024 \d

2C Conceptual Shortest Paths

For a weighted, undirected graph:

(T/F) Adding a constant positive integer k to all edge weights will not change the original shortest path
between any two vertices.

False. Consider a case of 3 nodes A, B, and Cwhere ABis 1, ACis 2.5 and BC is 1. Clearly, the best path from
Ato Cis through B, with weight 2. However, if we add 1 to each edge weight, suddenly the path going
through B will have weight 4, while the direct path is only 3.5. In general, paths with greater number of edges
end up getting penalized more than paths with fewer edges.

CS61B Spring 2024 \d

2C Conceptual Shortest Paths

For a weighted, undirected graph:

(T/F) Adding a constant positive integer k to all edge weights will not change the original shortest path
between any two vertices.

CS61B Spring 2024 \d

2D Conceptual Shortest Paths

For a weighted, undirected graph:

(T/F) Multiplying all edge weights by a constant positive integer k will not change the original shortest path
between any two vertices.

CS61B Spring 2024 \d

2D Conceptual Shortest Paths

For a weighted, undirected graph:

(T/F) Multiplying all edge weights by a constant positive integer k will not change the original shortest path
between any two vertices.

True. Suppose we have arbitrary nodes u and v. Let’s say the shortest path from u to v, before the
multiplication by k, was of total weight w. This implies that every other path from u to v was of total weight
greater than w. After multiplying each edge weight by k, the total weight of the shortest path becomes w * k
and the total weight of every other path becomes some number greater than w * k. Therefore, the original
shortest path doesn’t change.

CS61B Spring 2024 \d

2D Conceptual Shortest Paths

For a weighted, undirected graph:

(T/F) Multiplying all edge weights by a constant positive integer k will not change the original shortest path
between any two vertices.

p* (shortest path) = w

‘ p (any other path) =w + A

CS61B Spring 2024 \d

2D Conceptual Shortest Paths

For a weighted, undirected graph:

(T/F) Multiplying all edge weights by a constant positive integer k will not change the original shortest path
between any two vertices.

p* (shortest path) = k * w

‘ p (any other path) = k(w + A)

CS61B Spring 2024 \d

3A Shortest Paths Algorithm Design

Given a weighted directed graph with V vertices and E edges, two disjoint sets of vertices M and F, determine
the shortest path between any vertex in M and any vertexin F.

Case 1:|M| =1, |F| > 1.

CS61B Spring 2024 \d

3A Shortest Paths Algorithm Design

Given a weighted directed graph with V vertices and E edges, two disjoint sets of vertices M and F, determine
the shortest path between any vertex in M and any vertexin F.

Case 1:|M| =1, |F| > 1.

Run Dijkstra's, starting from the only city m in M. This will generate the shortest distance to all cities in the
graph. Then, iterate over every city f in F, and take the minimum distance fromm tof.

CS61B Spring 2024 \d

3B Shortest Paths Algorithm Design

Given a weighted directed graph with V vertices and E edges, two disjoint sets of vertices M and F, determine
the shortest path between any vertex in M and any vertexin F.

Case2:|M|>1, |F| =1

CS61B Spring 2024 \d

3B Shortest Paths Algorithm Design

Given a weighted directed graph with V vertices and E edges, two disjoint sets of vertices M and F, determine
the shortest path between any vertex in M and any vertexin F.

Case2:|M|>1, |F| =1

Create adummy vertex and add an edge with weight O from dummy to all vertices in M. Run Dijkstra’s
starting from the dummy. Take the distance from dummy to the node in F.

B 2
:)
N F
OI\/I 1\’

—’7A D
_o 1\ ‘1
R

_)2\F

CS61B Spring 2024 \d

3C Shortest Paths Algorithm Design

Given a weighted directed graph with V vertices and E edges, two disjoint sets of vertices M and F, determine
the shortest path between any vertex in M and any vertexin F.

Case 3:|M| > 1, |F| > 1.

CS61B Spring 2024 \d

3C Shortest Paths Algorithm Design

Given a weighted directed graph with V vertices and E edges, two disjoint sets of vertices M and F, determine
the shortest path between any vertex in M and any vertexin F.

Case 3:|M| > 1, |F| > 1.

Same algorithm in 3C, but take the minimum distance from dummy to all nodesin F.

-
B 2 F
—1 1\~E
M [7 N\
) 7A 1
- D

Lol o |

CS61B Spring 2024 \d

4A Introduction to MSTs - Kruskal’s

Connected Nodes:

12

A C

X
\ / D
5

G 4 B

4

E
7
2

F

CS61B Spring 2024 \d

4A Introduction to MSTs - Kruskal’s

Connected Nodes:
F
E

12

A C

\
\ / D
5

G 4 B

4

E
7
2

F

CS61B Spring 2024 \d

4A Introduction to MSTs - Kruskal’s

Connected Nodes:
F

E
B
C

12

A C

x
\ / D
5

G 4 B

4

E
7
2

F

CS61B Spring 2024 \d

4A Introduction to MSTs - Kruskal’s

Connected Nodes:

O W mm

12

A C

\
\ / D
5

G 4 B

4

E
7
2

CS61B Spring 2024 \d

4A Introduction to MSTs - Kruskal’s

Connected Nodes:

F
12 E
A C B
\ C
G

\ / D

5
G - B
4
E
7
2

CS61B Spring 2024 \d

4A Introduction to MSTs - Kruskal’s

Connected Nodes:

F
12 E
A C B
\ C
G
D
\ / A
5
G = B
4
E
/ 2 We don't take edge
- CE; it creates a cycle!

CS61B Spring 2024 \d

4A Introduction to MSTs - Kruskal’s

Connected Nodes:

F
12 E
A C B
\ C
G
D
\ / A
5 D
G = B
4
E
/ 2 We don't take edge
c BF; it creates a cycle!

CS61B Spring 2024 \d

4A Introduction to MSTs - Kruskal’s

12

A C

\
\ / D
5

G 4 B

4

E
/
2

Final Result

CS61B Spring 2024 \d

4A Introduction to MSTs - Prim’s

Connected Nodes:

CS61B Spring 2024 \d

4A Introduction to MSTs - Prim’s

Connected Nodes:

A
12 B
A = = = === - - C
, X
7/
6 3, D
/7
/7 5
e - - - - @ ~ o
- 4
\ §~~
= E
7\ /
S 2
F

CS61B Spring 2024 \d

4A Introduction to MSTs - Prim’s

Connected Nodes:

A
12 B
A C ~ C
~ _ 9
\ ™~
6 3 \ ~ D
\
\5
4 \
G = B =~ o
4
\ ~§~~ \

CS61B Spring 2024 \d

4A Introduction to MSTs - Prim’s

Connected Nodes:

A
12 B
A = = C ~ C
\ \9\ E
6 3 \ ~ D
\
\5
¢ —F--— 8 4 \\
\\
N\
7\ ,/ E
\. ” 2

CS61B Spring 2024 \d

4A Introduction to MSTs - Prim’s

Connected Nodes:

MmO @ >

CS61B Spring 2024 \d

4A Introduction to MSTs - Prim’s

Connected Nodes:

OmmAOw@>

CS61B Spring 2024 \d

4A Introduction to MSTs - Prim’s

12

A C

\
\ / D
5

G 4 B

4

E
/
2

Final Result

CS61B Spring 2024 \d

4B Introduction to MSTs

True/False: Adding 1 to the smallest edge of a graph G with unique edge weights must change the total
weight of its MST

CS61B Spring 2024 \d

4B Introduction to MSTs

True/False: Adding 1 to the smallest edge of a graph G with unique edge weights must change the total
weight of its MST

True, either this smallest edge (now with weight +1) is included, or this smallest edge is not included and
some larger edge takes its place since there was no other edge of equal weight. Either way, the total weight
increases.

CS61B Spring 2024 \d

4C Introduction to MSTs

True/False: If all the weights in a graph is unique, there is only one possible MST.

CS61B Spring 2024 \d

4C Introduction to MSTs

True/False: If all the weights in an MST are unique, there is only one possible MST.

True. The cut property states that the minimum weight edge in a cut must be in the MST. Since all weights are
unique, the minimum weight edge is always unique, so there is only one possible MST.

CS61B Spring 2024 \d

4D Introduction to MSTs

True/False: The shortest path from vertex u to vertex vin a graph G is the same as the shortest path from u to
vusing only edges in T, where T is the MST of G.

CS61B Spring 2024 \d

4D Introduction to MSTs

True/False: The shortest path from vertex u to vertex vin a graph G is the same as the shortest path from u to
vusing only edges in T, where T is the MST of G.

False, consider vertices C and E in the graph from 4A

CS61B Spring 2024 \d

